$A_1 = \int_0^1 \ln \gamma_1 dx_1$

$$4_2 = \int_0^1 \ln \gamma_2 dx_1$$

 $A_{H} = \int \frac{x=1}{2} (\Delta H/RT^{2}) dT$

$$\Delta A = A_1 - (A_2 + A_H)$$

- ΣA = area sum as defined in Table V
- B_{11} = second virial coefficient for pure component 1
- B_{22} = second virial coefficient for pure component 2
- B_{12} = second virial cross coefficient
- $\Delta H = \text{molar enthalpy of mixing, } J/g \text{ mol}$
- P = total pressure
- $P_{1^{0}}, P_{2^{0}} =$ vapor pressures of pure components 1, 2 R = gas constant
 - $T = \text{temperature}, ^{\circ}\text{K}$
- v_1^L, v_2^L = pure component liquid molar volumes, cc/g mol
 - x_1, x_2 = mole fractions of components 1, 2 in liquid phase
 - y_1, y_2 = mole fractions of components 1, 2 in vapor phase

GREEK LETTERS

- α^{12} = relative volatility
- γ_1 , γ_2 = liquid-phase activity coefficients of components 1, 2 $\delta_{12} = 2 B_{12} - B_{11} - B_{22}$

SURSCRIPTS

- 1 = component 1
- 2 = component 2
- i = component 1 or component 2

LITERATURE CITED

- (1) Brown, I., Austr. J. Sci. Res., Ser. A; Phys. Sci., 5 (3), 530 (1952).
- Fowler, R. T., Morris, G. S., J. Appl. Chem. (London), 5, 266 (2)(1955).

- (3) Gillespie, D. T. C., Ind. Eng. Chem., Anal. Ed., 18, 575 (1946)
- (4) Hala, E., Pick, J., Fried, V., Villim, O., "Vapor-Liquid Equilibrium," 2nd ed., p 280, Pergamon Press, New York, N.Y., 1967.
- "Handbook of Chemistry and Physics," 50th ed., p C321, (5)Chemical Rubber, Cleveland, Ohio, 1969.
- "International Critical Tables," Vol. 3, pp 27, 29, McGraw-(6) Hill, New York, N.Y., 1929.
- Jones, C. A., Schoenborn, E. M., Colburn, A. P., Ind. Eng. (7)Chem., 35, 666 (1943).
- Jordan, T. E., "Vapor Pressure of Organic Compounds," pp (8)6, 65, Interscience, New York, N.Y., 1954.
 (9) Katz, K., Newman, M., Ind. Eng. Chem., 48, 137 (1956).
- (10)"Kirk Othmer Encyclopedia of Chemical Technology," 2nd ed., Vol. 8 p 42; Vol. 11, p 1; Vol. 13, p 370, Interscience, New York, N.Y., 1965.
- (11) Knoebel, D. H., Edmister, W. C., J. Chem. Eng. Data, 13, 312 (1968).
- (12) McGlashan, M. L., Potter, D. J. B., Proc. Roy. Soc., 267A, 478 (1962).
- (13) Otsuki, H., Williams, C. F., Chem. Eng. Progr. Symp. Ser., 49 (6), 55 (1953).
- (14) Pitzer, K. S., Curl, R. F., J. Amer. Chem. Soc., 79, 2369 (1957)
- (15) Prausnitz, J. M., "Molecular Thermodynamics of Fluid-Phase Equilibrium," pp 74, 157, 214, 471, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- (16) Prausnitz, J. M. Eckert, C. A., Orye, R. V., O'Connell, J. P., "Computer Calculations for Multicomponent Vapor-Liquid Equilibria," p 20, Prentice-Hall, Englewood Cliffs, N.J., 1967.
- (17) Savini, C. G., Winterhalter, D. R., Van Ness, H. C., J. Chem. Eng. Data, 10, 168 (1965).
- Van Ness, H. C., Soczek, C. A., Kochar, N. K., ibid., 12, 346 (18)(1967).

RECEIVED for review January 28, 1971. Accepted November 1, 1971. Paper presented at the Chicago meeting of the AIChE, 1970. This work was supported in part by grants from the National Research Council of Canada.

Emf Measurements in Additive Ternary Molten Salt Systems PbCl₂-KCl-NaCl and PbCl₂-CsCl-NaCl

KJELL HAGEMARK,¹ DENNIS HENGSTENBERG, and MILTON BLANDER² North American Rockwell Science Center, Thousand Oaks, Calif. 91360

> Emf measurements in the binary molten systems, PbCl₂-NaCl, PbCl₂-KCl, and PbCl₂-CsCl, and in the ternary systems, PbCl₂-NaCl-KCl and PbCl₂-NaCl-CsCl, were made at mole fractions of PbCi₂ of 0.5 and 0.3. Our data (as will as some previous data) on excess free energies of solution in the three binary systems are consistent with the equation first suggested by Førland (Equation 1) in terms of equivalent fractions, with the coefficients $\lambda \equiv -1800,$ -10,300, and -15,500 cal/mol for the mixtures with NaCl, KCl, and CsCl, respectively. Measurements of $\overline{G}_{PbCl_2}{}^E$ at constant mole fractions of PbCI₂ in the ternary systems exhibited small negative deviations from additivity.

In this paper we present electromotive force measurements and partial molar quantities for PbCl₂ in the three binary systems PbCl₂-NaCl, PbCl₂-KCl, and PbCl₂-CsCl, and in the two ternary systems, PbCl₂-NaCl-KCl and PbCl₂-NaCl-CsCl, at mole fractions of $PbCl_2$ of 0.5 and 0.3. A critique of previous work on the binary systems is given, and we show that the simplest representation of the data on the activity coefficients, γ , and the partial molar excess free energy, \bar{G}^{E} , of PbCl₂ has a form first suggested for the binaries by Førland (2, 6):

$$\bar{G}_{PbCl_2}^E = RT \ln \gamma_{PbCl_2} = \lambda (1 - N_{PbCl_2}')^2$$
(1)

¹ Present address, 3M Central Research Laboratory, St. Paul, Minn. 55119

² Present address, Chemical Engineering Division, Argonne ational Laboratory, Argonne, Ill. 60439. To whom correspon-National Laboratory, Argonne, Ill. 60439. dence should be addressed.

where N_{PbCl_2} is the equivalent fraction of $PbCl_2$ defined by the relationship

$$N_{\rm PbCl_2}' = \frac{2 N_{\rm PbCl_2}}{2 N_{\rm PbCl_2} + N_{\rm ACl}} = \frac{2 n_{\rm PbCl_2}}{2 n_{\rm PbCl_2} + n_{\rm ACl}}$$

where N designates mole fraction, n the number of moles, and ACl alkali chloride. Values of $\overline{G}_{PbCl_2}^{E}$ in the ternary systems at constant mole fraction of PbCl₂ exhibit negative deviations from additive behavior. These data will be analyzed in terms of the thermodynamic treatment we have utilized previously (7, 8).

(7, 8). Previous work on PbCl₂-containing systems include emf measurements of the activities of PbCl₂ in the binary systems PbCl₂-NaCl and PbCl₂-KCl (11, 13, 14) vapor pressure and transpiration measurements in the PbCl₂-KCl and PbCl₂-CsCl systems (1, 3) and calorimetric measurements of enthalpies of mixing of PbCl₂ with all the alkali halides (15). The only prior measurements in the ternary systems are for a 48-36-16 mol % PbCl₂-KCl-NaCl mixture (4) and a dilute solution of PbCl₂ in equimolar NaCl-KCl (5).

Systematic emf studies of ternary molten salt mixtures have been seldom reported. Partial molar excess properties of NiCl₂ in 1:1 molar NaCl-KCl have been reported (10) and the ternary systems AgCl-NaCl-KCl and AgCl-NaCl-CsCl have been studied.

EXPERIMENTAL

The measurements were carried out in the reversible formation cell graphite, $Pb|PbCl_2 + ACl|Cl_2$, graphite, (A = Na, K, Cs, Na-K, Na-Cs) which has provided reliable emf data for the free energy of formation of $PbCl_2$. The construction of the cell is identical to the one previously described (9). Except for CsCl (Penn Rare Metals, 99.9% pure), the chemicals were Baker "Analyzed" reagents and were used without any further purification. The Cl₂ gas was 99.5% pure from Matheson Co. and was bubbled through H_2SO_4 prior to being passed into the chlorine electrode.

The composition of the salt mixture was calculated from the weighed-out portions of the salts, and in some cases they were checked by wet chemical analysis after the experiments. (Lead was done by back titration with Ca^{2+} after addition of excess EDTA. Na, K, and Cs were done by flame emission spectroscopy.) Although vaporization was observed, the concentration did not change significantly during an experiment (less than $\pm 1 \mod \%$). To check the electrodes, emf measurements were frequently checked in pure PbCl₂. The contamination of these electrodes by their handling and exposure to oxygen upon opening and closing of the cell compartment led to emf values for pure PbCl₂ which differed by 1.0– 2.6 mV from measurements made by using lead carefully purified by acid washing.

The absolute values of the emf given here have been corrected for this measured difference, which is due to impurities in the lead and should be the same for all cells for a given impurity level. The solution properties calculated from differences of emf values are, of course, unaffected by this shift. The emf measurements were calibrated with a standard Eppley cell and the platinum-platinum-10% rhodium thermocouple was calibrated vs. a standard thermocouple to $\pm 0.2^{\circ}$ C. Measurements were made to $\pm 1^{\circ}$ C.

RESULTS

Ternary mixtures of PbCl₂-NaCl-KCl and PbCl₂-NaCl-CsCl were examined at compositions N_{PbCl_2} equals 0.5 and 0.3. The ratio $x = n_{NaCl}/(n_{NaCl} + n_{ACl})$ was chosen equal to 0, 0.25, 0.5, 0.75, and 1.0. Data for the emf as a function of temperature are shown in Figures 1-4, where it is noted that at least two separate sets of measurements were made for each composition. The temperature range of the measurements

was chosen well above the liquidus temperature to ensure that the salt mixture was completely molten; this explains the higher temperatures for the mixtures high in NaCl, or low in PbCl₂. The data are also given in Table I. A least-squares

Table I.	Measured Values of KCI and PbCI	Emf in Systems -NaCl-CsCl	PbCl ₂ -NaCl-
50 I	PbCl ₂ -50 KCl	50 PbCl ₂ -12.5	KCl-37.5 NaCl
$\overline{T. ^{\circ}C}$	Emf. V	T. °C	Emf. V
594.5	1 2733	650.5	1.2251
606.2	1.2682	643.1	1.2290
599.8	1.2728	671.1	1.2142
589.2	1.2784	643.3	1.2309
577.0	1.2863	668.3	1.2168
567.5	1.2909	629.1	1.2379
558.4	1.2953	659.8	1.2208
557.4	1.2968	633.9	1.2346
562.0	1.2933		
569.9	1.2884	637.4	1.2341
582.2	1.2813	620.1	1.2428
590.2	1.2764	645.8	1.2298
507.7	1.2099	003.0 660 6	1.2205 1.9171
091.1	1.2723	657 5	1.2171
564 3	1 2022	628 0	1 2200
551.0	1.2922	652.1	1.2264
567.1	1.2912		1.2201
583.5	1.2805	$_{50}$ PbCl ₂	-50 NaCl
593.6	1.2741	672.3	1.2092
580.9	1.2825	652.9	1.2194
571.8	1.2871	640.2	1.2262
555.7	1.2965	622.3	1.2355
578.0	1.2836	672.8	1.2100
600.1	1.2712	639.6	1.2269
50 PbCl ₂ -3	37.5 KCl–12.5 NaCl	620.9	1.2365
597 7	1 2678	670.5	1.2103
590.0	1.2729	652.2	1.2199
581.1	1.2776	620.8	1.2333
567.7	1.2848	636.2	1.2283
553.3	1.2932	661.6	1.2150
568.5	1.2847	645.8	1.2227
584.1	1.2755	20 DLC	
593.6	1.2701		$l_2 = 70 \text{ KOI}$
598.6	1.2668	686.6	1.2782
573.5	1.2816	689.0	1.2771
		699.6	1.2721
604.7	1.2635	679.0	1.2827
092.0 500.0	1.2708	672.6	1.2800
572.2	1.2770	664.4	1.2898
012.5	1.2824	008.2	1.2920
50 PbCl_2	$_2$ –25 KCl–25 NaCl	650 7	1.2955
505 0	1 2640	656 1	1 2942
603.8	1.2589	663 6	1 2906
586.9	1.2679		
579.2	1.2723	683.4	1.2821
574.8	1.2746	679.0	1.2842
566.2	1.2792	669.7	1.2895
558.3	1.2843	660.4	1.2943
553.0	1.2874	653.9	1.2982
561.8	1.2825	663.3	1.2926
570.1	1.2777	667.6	1.2900
579.0	1.2725	675.5	1.2855
588.8	1.2664	681.2	1.2839
· · ·	1 0000	689.3	1.2798
007.7	1.2280	090.7 604 6	1.2/03
607 9	1.2307	084.0	1.2813
615 5	1,2409 1,9597	034.1	1.2821
666 0	1.2024	$30 \text{ PbCl}_2-52.5$	KCl-17.5 NaCl
636 1	1.2205	689.5	1.2704
653.1	1,2302	693.4	1.2683
585.8	1.2683	695.8	1.2670
-		Continues	d on nort man
		(Commune	u on nexi paye)

fit of the data to an equation of the form

$$E(V) = a + b(t - t_0)$$
(2)

led to the coefficients in Table II. The standard deviations were generally less than 1 mV and always less than 2 mV.

In each case t_0 (in °C) is chosen close to the average temperature of the series of measurements. To make an isothermal comparison of the data, values for the emf were obtained by a linear extrapolation (or interpolation) to an intermediate temperature, 625°C. The emf value of the formation cell for pure PbCl₂, E° at 625°C was obtained by a short extrapola-

			Table I. ((Continued)			
30 PbCl ₂ -52.5 KCl-1.75 NaCl (Contd.)		$\begin{array}{c} 30 \ \mathrm{PbCl_{2}17.5} \ \mathrm{KCl-52.5} \ \mathrm{NaCl} \\ (Contd.) \end{array}$		50 PbCl ₉ -37.5 CsCl-12.5 NaCl (Contd.)		30 PbCl ₉ -52.5 CsCl-17.5 NaCl (Contd.)	
<i>T</i> , °C	Emf, V	<i>T</i> , °C	Emf, V	T, °C	Emf, V	$\overline{T, °C}$	Emf, V
692.9	1.2685	659.5	1.2561	679 0	1.2365	658.4	1.3096
687 2	1 2722	664.4	1.2525	630 1	1 2596	664.1	1.3068
682 3	1 2738	672.3	1.2485	000.1	1.2000	683.6	1.2978
600 0	1.2700	678.1	1.2458	654 4	1 9466	701 0	1 2890
000.0	1.2740	685 3	1 2423	004.4	1.2400	688 5	1 2060
676.6	1.2770	600.0	1.2420	668.2	1.2395	000.0	1.2900
667.1	1.2817	090.9	1.2390	644.1	1.2511	070.7	1.2921
650.5	1.2895	081.8	1.2445	638.4	1.2549	656.8	1.3109
654.5	1.2875	676.4	1.2472	625.5	1.2605	670.9	1.3035
661.1	1.2851			659.8	1.2433	693.7	1.2929
		685.9	1.2425	50 PhC125	CaCl_25 NaCl	668.5	1.3048
678.4	1.2759	667.8	1.2515	0010012-20	0501 20 11401		
663.9	1.2841	660.0	1.2556	662.9	1.2355	673.0	1.3034
650.5	1 2856	664.2	1.2526	674.2	1.2297	648.5	1.3143
650.9	1.2000	671 9	1.2484	648.6	1.2430	662 7	1 3081
050.2	1.2902	682 5	1 2436	663 2	1 2350	601 5	1 2042
657.2	1.2800	605 0	1.2700	670.7	1.2000	600 5	1.2942
670.0	1.2795	095.8	1.2001	675 0	1.0206	080.5	1.2990
678.4	1.2756	690.0	1.2392	000.2	1.2390	655.7	1.3112
688.1	1.2712	678.0	1.2459	630.2	1.2509		
699.8	1.2651	650.5	1.2597	622.3	1.2545	30 PDCI ₂ -35	USUI-35 NAUI
688.5	1.2717	30 PhC1	-70 NoCl	• • • •	• • • • •	650.2	1.2914
		001001	1 0000	646.1	1.2428	656.7	1.2882
30 PbCl₂−35	KCl-35 NaCl	692.7	1.2222	677.4	1.2267	665.8	1.2837
601 1	1 9596	697.7	1.2201	668.6	1.2313	681.7	1.2765
091.1	1.2020	684.6	1.2270	633.7	1.2488	691 6	1 2715
687.5	1.2549	676.6	1.2314	656 6	1 2370	600 0	1 2686
683.3	1.2572	671.4	1.2341			698.0 698.4	1.2000
679.2	1.2592	667.8	1.2362	$50 \text{ PbCl}_2 - 12.5$	USCI-37.5 Nau	000.4	1,2702
673.6	1.2622	664 8	1 2379	$625 \ 7$	1.2506	0/3.8	1.2810
669.4	1.2644	655 4	1.2010	656 8	1 2338	681.9	1.2763
662.7	1.2677	055.4	1.2421	680.0	1.2000	698.0	1.2686
656 7	1 2710			080.0	1.2209	685.6	1.2749
640 3	1 2747	692.3	1.2224	009.0	1.2200	671.7	1.2819
644 7	1.2770	689.2	1.2242	649.6	1.2361	657.6	1.2886
044.7	1.2770	675.3	1.2321	630.0	1.2469	610 5	1 2817
647.9	1.2704	663.0	1.2388	617.5	1.2540		1.2011
654.3	1.2722	657.6	1.2417	641.0	1.2414	671 0	1 9900
660.3	1.2693	651 9	1 2448	660.6	1.2306	071.9	1.2009
667.1	1.2662	655 1	1 2433			000.0	1.2800
677.6	1.2609	667 6	1 2360	630 5	1 2474	648.5	1.2923
		400.0	1 0006	665 5	1 9990	682.0	1.2763
684 6	1.2558	082.0	1.2280	000.0	1.2209	697.0	1.2691
673 8	1 2612	687.0	1.2257	078.9	1.2209	688.4	1.2733
652 1	1 9799	695.5	1.2213	671.8	1.2234		
640 5	1,2722	50 PhC	-50 CeCl	651.1	1.2356	$30 \text{ PbCl}_2-17.5$	CsCl-52.5 NaCl
040.5	1.4779		2-00 CSCI	640.1	1.2418	686 6	1 2567
644.7	1.2753	678.4	1.2395	653.7	1.2355	608.2	1 2508
657.1	1.2695	661.0	1.2487	646.0	1.2387	695.0	1.2550
673.1	1.2610	642.7	1.2584	20 DPC	70 CaCl	671 0	1.2000
684.1	1.2562			- 30 F 001	2-70 USUI	071.2	1.2027
688.4	1.2536	625.7	1.2669	676.7	1.3207	663.5	1.2072
699.1	1.2477	644.8	1.2565	688.6	1.3152	656.5	1.2706
694.1	1.2499	662 4	1 9474	673 5	1 3229	668.7	1.2645
600 0	1 2517	670 0	1 0207	662 0	1 3296	682.9	1.2575
697 6	1.2527	079.9	1.2007	670.0	1 2024	691.9	1.2522
607.0	1.2007	007.0	1.2404	012.2	1.0204	679.8	1.2580
083.2	1.2007	656.9	1.2505				
679.2	1.2079	650.1	1.2539	669.6	1.3257	677 6	1 2582
670.0	1.2625	635.2	1.2611	700.0	1.3099	662 6	1.2002
662.9	1.2666	613.2	1.2732	692.0	1.3139	003.0	1.2004
658.0	1.2681	631.4	1.2639	680.5	1.3195	049.0	1.4/00
676.5	1.2589			663.8	1.3276	071.7	1.2612
686.5	1.2537	$50 \text{ PbCl}_2-37.5$	UsCI-12.5 NaCl	654.8	1.3317	688.1	1.2531
695.3	1.2496	650.2	1.2493	648 5	1.3358	700.5	1.2467
00010	_ /	672.7	1.2387	620.0	1 3169	686.5	1.2542
30 PbCl ₂ -17.5	KCl-52.5 NaCl	655 3	1.2477	700 5	1 3100	673.1	1.2610
697 0	1 9407	629 5	1 2501	100.0	1 2200	656.8	1.2693
001.9	1.440/	004.0 611 0	1 0270	040.7	1.3383	680 3	1.2570
092.0	1.2381	014.0	1.40/8	$30 \text{ PbCl}_2-52.5$	CsCl-17.5 NaCl	608.0	1 2486
694.3	1.2371	043.8	1.2017	<u> </u>	1 2140	600 1	1 0508
663.6	1.2527	667.1	1 2417	690.8	1.3142	089.1	1.2020

218 Journal of Chemical and Engineering Data, Vol. 17, No. 2, 1972

tion of the values for E° in the range 500-620°C from a previous paper (9).

The activity of a component, i, in solution (here, $i = PbCl_2$), a_i , may be defined through the relationship

$$RT \ln a_i = \bar{G}_i - \bar{G}_i^{\circ} = -2 F(E - E^{\circ})$$
(3)

where R is the gas constant in cal/mol-degree, T is the temperature in degrees Kelvin, $\tilde{G}_i - G_i^{\circ}$ is the partial molar free energy of solution of PbCl₂; the Faraday constant, F = 23,062 cal/V, and $E - E^{\circ}$ is the difference in emf between a cell

Figure 1. Emf vs. temperature in PbCl₂-NaCl-KCl system

Figure 2. Emf vs. temperature in PbCl₂-NaCl-KCl system

containing *i* in solution and a cell containing pure *i*, respectively. The activity coefficient, γ_i , is related to the activity by Equation 4:

$$\gamma_i = a_i / N_i \tag{4}$$

where N_i is the mole fraction of PbCl₂ in the system. The partial molar excess free energy,

$$\bar{G}_i^E \equiv RT \ln \gamma_i = \bar{G}_i - G_i^\circ - RT \ln N_i \tag{5}$$

Figure 3. EMF vs. temperature in PbCl₂-NaCl-CsCl system

Figure 4. EMF vs. temperature in PbCl₂-NaCl-CsCl system

Journal of Chemical and Engineering Data, Vol. 17, No. 2, 1972 219

Figure 5. Top, free energy function at constant $N_{\rm PbCl_2}$ in PbCl₂-NaCl-KCl system at 625°C. Bottom, free energy function at constant $N_{\rm PbCl_2}$ in the PbCl₂-NaCl-CsCl system at 625°C

Values of $\bar{G}_{PbCl_2}^{E}$ at 625°C are given in the last column of Table II.

In Figures 5a and 5b, $\bar{G}_{PbCl_2}^{E}/(1 - N_{PbCl_2})^2$ is shown as a function of x at constant N_{PbCl_2} . With an uncertainty of ± 1 mV in $E - E^{\circ}$, the error in $\bar{G}_{PbCl_2}^{E}/(1 - N_{PbCl_2})^2$ is ± 200 cal at N = 0.5 and ± 100 cal at $N_{PbCl_2} = 0.3$. Within the limits of experimental error, $\bar{G}_{PbCl_2}^{E}/(1 - N_{PbCl_2})^2$ is not a linear function of x at constant N_{PbCl_2} . In the systems PbCl₂-NaCl-KCl, the negative deviation from linearity seems to be greater at smaller values of x, whereas the opposite is observed to be the case in the system PbCl₂-NaCl-CsCl where the negative deviation is at x close to 1. A short extrapolation of the emf measurements of Delimarskii and Roms (4) for the 48 mol % PbCl_2-36% KCl-16% NaCl systems gives $\bar{G}_{PbCl_2}^{E}/(1 - N_{PbCl_2})^2 = -4800$ cal for x = 0.31 and N = 0.5 at 625°C. This is 900 cal more negative than is calculated in the present work, although it supports the negative deviation from linearity observed in Figure 5a.

DISCUSSION

Measured values of $\bar{G}_{PbCl_2}^{E}$ in the three binary systems are plotted in Figure 6 vs. $(1 - N_{PbCl_2})^2$. Our measurements

Figure 6. Plot of $\overline{G}_{PbCl_2}^E$ vs. $(1 - N_{PbCl_2})^2$ at 625°C

on the PbCl₂-NaCl and PbCl₂-KCl systems are consistent with those of Lantratov and Alabyshev (13) and those of Markov et al. (14). The vapor pressure measurements in the PbCl₂-KCl system by Barton and Bloom (1) are inconsistent with the other results and were not plotted. The transpiration measurement of Bloom and Hastie (3) on the PbCl₂-CsCl system are plotted in Figure 6 and differ from ours. Reexamination of their data reveals two possible reasons for these discrepancies. First, the measurements at $N_{PbCl_2} = 0.299$ were uncorrected for a significant partial pressure of the species CsCl indicating a higher activity of PbCl₂ than they report. Second, they used a value for the pressure of pure PbCl₂ at 650°C of 9.860 mm which is higher than the value given in the JANAF Tables (12). If their points are thus corrected, they correspond closely to our emf measurements.

The curvature of the plots of $\bar{G}_{PbCl_2}^{E}$ in Figure 6 suggests the dependence upon concentration first suggested by Førland (6) and given in Equation 1. A replot of the data vs. $(1 - N_{PbCl_2}')^2$ in Figure 7 indicates no curvature within experimental precision and supports this form for these data with $\lambda = -1800, -10,300, \text{ and } -15,500 \text{ cal/mol}$ for the PbCl₂-NaCl, PbCl₂-KCl, and PbCl₂-CsCl systems, respectively. Values of $\bar{H}_{PbCl_2}^{-}$ were calculated from the data of McCarty and Kleppa (15), and with values of $\bar{G}_{PbCl_2}^{-E}$ at 665°C from our data, we calculated the small values of $\bar{S}_{PbCl_2}^{-E}$ given in Table III, which are consistent with findings in many other systems.

Table II. Least Squares Fit to Emf Data and Partial Molar Excess Free Energy of PbCl₂ at 625°C

System	$\operatorname{Emf}_{a}, V$	$ar{G}_{ ext{PbCl2}^E}$ (625°C),
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$		1940
50 PbCl_2 - $50 \text{ KCl}=0 \text{ NaCl}$	$1.2858 - 585 \cdot 10^{-6} (t - 575)$	- 1240
-37.5 KCI-12.5 NaCI	$1.2809 - 576 \cdot 10^{-6} (t - 575)$	-1040
-25 KCl-25 NaCl	$1.2748 - 562 \cdot 10^{-6} (t - 575)$	- 790
-25 KCl -25 NaCl	$1.2329 - 556 \cdot 10^{-6} (t - 650)$	
-12.5 KCl -37.5 NaCl	$1.2269-540\cdot 10^{-6} (t - 650)$	-500
-0 KCl -50 NaCl	$1.2211-521\cdot 10^{-6} (t - 650)$	-210
30 PbCl ₂ -70 KCl-0 NaCl	$1.2857 - 490 \cdot 10^{-6} (t - 675)$	-2810
-52.5 KCl-17.5 NaCl	$1.2777 - 497 \cdot 10^{-6} (t - 675)$	-2450
-35 KCl-35 NaCl	$1.2607 - 526 \cdot 10^{-6} (t - 675)$	-1740
-17.5 KCl-52.5 NaCl	$1.2468 - 523 \cdot 10^{-6} (t - 675)$	-1100
-0 KCl-70 NaCl	$1.2323 - 545 \cdot 10^{-6} (t - 675)$	-470
50 PbCl ₂ -50 CsCl-0 NaCl	$1.2541 - 516 \cdot 10^{-6} (t - 650)$	-1720
-37.5 CsCl-12.5 NaCl	$1.2494 - 488 \cdot 10^{-6} (t - 650)$	-1480
-50 CsCl -50 NaCl	$1.2412 - 488 \cdot 10^{-6} (t - 650)$	-1100
-12.5 CsCl-37.5 NaCl	$1.2368 - 535 \cdot 10^{-6} (t - 650)$	-950
30 PbCl ₂ -70 CsCl-0 NaCl	$1.3223 - 493 \cdot 10^{-6} (t - 675)$	-4500
-52.5 CsCl-17.5 NaCl	$1.3020 - 480 \cdot 10^{-6} (t - 675)$	- 3530
-35 CsCl-35 NaCl	$1.2798 - 474 \cdot 10^{-6} (t - 675)$	-2500
-17.5 CsCl-52.5 NaCl	$1.2605 - 499 \cdot 10^{-6} (t - 675)$	-1670
100 PbCl_2	$1.2320 \cdot 596 \cdot 10^{-6} (t - 575)$	
	$1.2028 - 585 \cdot 10^{-6} (t - 625)$	
	$1.1881 - 580 \cdot 10^{-6} (t - 650)$	
	$1.1734 - 575 \cdot 10^{-6} (t - 675)$	

Table	III.	Partial	Excess	Thermodynam	nic Quantities	of
	PI	oCl ₂ at 6	65°C a	nd at N _{PbCl2} Ec	juals 0.5	

System	$ar{H}_{ ext{PbCl}_2}{}^{E}, ext{cal}^{a}$	$ar{G}_{ ext{PbCl}_2}{}^E, ext{cal}^b$	$\bar{S}_{\mathtt{PbCl}_2}^{E}, \\ \mathrm{cal/deg}$
PbCl ₂ -NaCl PbCl ₂ -KCl PbCl ₂ -CsCl	-125 -750 -1540	-280 -1200 -1810	$\begin{array}{c} 0.2 \\ 0.5 \\ 0.3 \end{array}$
• Reference 15.	^b Extrapolated from	n present data	

LITERATURE CITED

- (1) Barton, J. L., Bloom, H., Trans. Faraday Soc., 55, 1792 (1959).
- Blander, M., "Some Fundamental Concepts in the Chemistry (2)of Molten Salts," in "Molten Salts," ed. by G. Mamantov, Marcel Dekker, New York, N.Y., and London, 1969.
- Bloom, H., Hastie, J. W., J. Phys. Chem., 72, 2361 (1968). (3)
- Delimarksii, Yu. K., Roms, Yu. G., Ukr. Khim. Zh., 29, (4) 781 (1963).
- Flengas, S. N., Ingraham, T. R., J. Electrochem. Soc., 106, $(\mathbf{5})$ 714 (1959).
- (6)
- Førland, T., J. Phys. Chem., 59, 152 (1955). Guion, J., Blander, M., Hengstenberg, D., Hagemark, K., (7)ibid., 72, 2086 (1968).
- (8)
- Hagemark, K., *ibid.*, **72**, 2316 (1968). Hagemark, K., Hengstenberg, D., J. Chem. Eng. Data, **11**, (9)596 (1966).
- Hamby, Drannan C., Scott, Allen B., J. Electrochem. Soc., 115 (7), 704 (1968). (10)
- Hildebrand, J. H., Ruhle, G. C., J. Amer. Chem. Soc., 49, (11)722 (1927)
- (12)JANAF Thermochemical Tables, Dow Chemical Co., Midland, Mich., 1961.
- Lantratov, M. F., Alabyshev, A. F., Z. Prikl. Khim., 26, (13)263 (1953) (Russian).
- Markov, B. F., Delimarskii, Yu. K., Panchenko, T. D., Zh. (14)Fiz. Khim., 28, 1987 (1954)
- McCarty, F. G., Kleppa, O. J., J. Phys. Chem., 68, 3846 (15)(1964).

RECEIVED for review May 13, 1971. Accepted November 1, 1971.